International I $\#$ Rectifier
 MBR30...CT
 MBRB30...CT
 MBR30...CT-1

SCHOTTKY RECTIFIER

$$
\mathrm{I}_{\mathrm{F}(\mathrm{AV})}=30 \mathrm{Amp}
$$

$$
V_{R}=30-45 V
$$

Major Ratings and Characteristics

$\left.\begin{array}{|l|c|c|}\hline \text { Characteristics } & \text { Values } & \text { Units } \\ \hline \mathrm{I}_{\mathrm{F}(\mathrm{AV})} \begin{array}{l}\text { Rectangular waveform } \\ \text { (Per Device) }\end{array} & 30 & \mathrm{~A} \\ \hline \mathrm{I}_{\mathrm{FRM}} \text { @ } \mathrm{T}_{\mathrm{C}}=123^{\circ} \mathrm{C} \\ \text { (PerLeg) }\end{array}\right)$

Description/ Features

This center tap Schottky rectifier has been optimized for low reverse leakage at high temperature. The proprietary barrier technology allows for reliable operation up to $150^{\circ} \mathrm{C}$ junction temperature. Typical applications are in switching power supplies, converters, free-wheeling diodes, and reverse battery protection.

- 150° C T_{j} operation
- Center tap TO-220, D²Pak and TO-262 packages
- Low forward voltage drop
- High purity, high temperature epoxy encapsulation for enhanced mechanical strength and moisture resistance
-High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Case Styles		
MBR30..CT	MBR30.. S	MBR30.. -1

MBR30...CT, MBRB30...CT, MBR30...CT-1
Bulletin PD-20716 rev.D 01/07
Voltage Ratings

Parameters	MBR3035CT MBRB3035CT MBR3035CT-1	MBR3045CT MBRB3045CT MBR3045CT-1
$\mathrm{V}_{\mathrm{R}} \quad$ Max. DC Reverse Voltage (V)	35	45
$\mathrm{~V}_{\text {RwM }}$ Max. Working Peak Reverse Voltage (V)		

Absolute Maximum Ratings

Parameters		Values	Units	Conditions	
$\mathrm{I}_{\text {(AV) }}$	Max. Average Forward (PerLeg)	15	A	@ $\mathrm{T}_{\mathrm{C}}=123^{\circ} \mathrm{C},\left(\right.$ Rated V_{R})	
	Current (PerDevice)	30			
$\mathrm{I}_{\text {FRM }}$	Peak Repetitive Forward Current (Per Leg)	30	A	Rated V_{R}, square wave, 20 kHz$\mathrm{T}_{\mathrm{C}}=123^{\circ} \mathrm{C}$	
$\mathrm{I}_{\text {FSM }}$	Non Repetitive Peak Surge Current	1020	A	$5 \mu \mathrm{~s}$ Sine or $3 \mu \mathrm{~s}$ Rect. pulse	Following any rated load condition and with rated $V_{\text {RRM }}$ applied
		200		Surge applied at rated load conditions halfwave, single phase, 60 Hz	
$\mathrm{E}_{\text {AS }}$	Non-RepetitiveAvalancheEnergy	10	mJ	(PerLeg) $\mathrm{T}_{\mathrm{J}}=25^{\circ}$	$\mathrm{C}, \mathrm{I}_{\mathrm{AS}}=2 \mathrm{Amps}, \mathrm{L}=5 \mathrm{mH}$
$\mathrm{I}_{\text {AR }}$	RepetitiveAvalancheCurrent (Per Leg)	2	A	Current decaying linearly tozeroin $1 \mu \mathrm{sec}$ Frequency limited by T_{J} max. $\mathrm{V}_{\mathrm{A}}=1.5 \mathrm{x} \mathrm{V}_{\mathrm{R}}$ typical	

Electrical Specifications

	Parameters	Values	Units	Conditions		
$V_{\text {FM }}$	Max. Forward Voltage Drop	0.76	V	@ 30A	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	
(1)		0.6	V	@ 20A	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$	
		0.72	V	@ 30A		
$\mathrm{I}_{\text {RM }}$	Max. Instantaneus Reverse Current(1)	1	mA	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	Rated DC voltage	
		100	mA	$\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		
$\mathrm{V}_{\mathrm{F} \text { (TO) }}$	Threshold Voltage	0.29	V	$\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{J}}$ max.		
r_{t}	Forward Slope Resistance	13.6	$\mathrm{m} \Omega$			
C_{T}	Max. Junction Capacitance	800	pF	$\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}_{\mathrm{DC}}$ (t	t signal range 100 Khz to 1 Mhz$) 25^{\circ} \mathrm{C}$	
$\mathrm{L}_{\text {s }}$	Typical Series Inductance	8.0	nH	Measured from	top of terminal to mounting plane	
dv/dt	Max. Voltage Rate of Change	10000	$\mathrm{V} / \mu \mathrm{s}$	(Rated V_{R})		

Thermal-Mechanical Specifications

	Parameters	Values	Units	Conditions
T_{J}	Max. Junction Temperature Range	-65to 150	${ }^{\circ} \mathrm{C}$	
$\mathrm{T}_{\text {stg }}$	Max. Storage Temperature Range	-65to 175	${ }^{\circ} \mathrm{C}$	
$\mathrm{R}_{\text {thJc }}$	Max. Thermal Resistance Junction to Case (Per Leg)	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$	DC operation
$\mathrm{R}_{\mathrm{thCs}}$	Typical Thermal Resistance Case to Heatsink	0.50	${ }^{\circ} \mathrm{C} / \mathrm{W}$	Mounting surface, smooth and greased Only for TO-220
$\mathrm{R}_{\mathrm{thJA}}$	Max. Thermal Resistance Junction to Ambient	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$	DC operation For D2Pak and TO-262
wt	Approximate Weight	$2(0.07)$	g(oz.)	
T	Mounting Torque $\quad \frac{\text { Min. }}{}$	6 (5)	$\begin{array}{\|l\|} \hline \mathrm{Kg}-\mathrm{cm} \\ (\mathrm{lbf}-\mathrm{in}) \end{array}$	Non-lubricated threads
		12(10)		

Fig. 1-Max. Forward Voltage Drop Characteristics
(PerLeg)

Fig. 2-Typical Values Of Reverse Current Vs. Reverse Voltage (PerLeg)

Fig. 3-Typical Junction Capacitance Vs. Reverse Voltage (PerLeg)

[^0]Fig. 4-Max. Thermal Impedance $Z_{\text {thJc }}$ Characteristics (PerLeg)

Fig. 5-Max. Allowable Case Temperature Vs. Average Forward Current (PerLeg)

Fig. 6-Forward Power Loss Characteristics (PerLeg)

Fig. 7-Max. Non-Repetitive Surge Current (PerLeg)
(2) Formula used: $T_{C}=T_{J}-\left(P d+P d_{R E V}\right) x R_{\text {thJC }}$;
$P d=$ Forward Power Loss $=I_{F(A V)} \times V_{F M} @\left(I_{F(A V)} / D\right)$ (see Fig. 6);
$\mathrm{Pd}_{\mathrm{REV}}=$ Inverse Power Loss $=\mathrm{V}_{\mathrm{R} 1} \times \mathrm{I}_{\mathrm{R}}(1-\mathrm{D}) ; \mathrm{I}_{\mathrm{R}} @ \mathrm{~V}_{\mathrm{R} 1}=$ rated V_{R}

Outline Table

NOTES:

1. DIMENSIONING AND TOLERANGING PER ASME Y14.5M-1994
2. DIMENSIONS ARE SHOWN IN MLLIMETERS [INCHES].
3. DIMENSION D \& E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.OOS"
PER SIOE. THESE DMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

LEAD ASIIGNMENTS
HEXEEI
1.- GATE 2. 4.- DRAIN 3- SOURCE
1 CBT S. COPACK
$\begin{aligned} & \text { 1.- GATE } \\ & \text { 2. 4. COLLECTOR } \\ & \text { 3.- EMITTER } \end{aligned}$
DIODES
$\begin{aligned} & \text { 1.- ANODE * } \\ & \text {. } 4 \text { - CATHODE } \\ & \text { 3- ANODE } \end{aligned}$
* Part dependent.

Conform to JEDEC outline D 2 Pak (SMD-220)
Dimensions in millimeters and (inches)

Outline Table

Tape \& Reel Information

Part Marking Information

Ordering Information Table

```
Device Code
```


Data and specifications subject to change without notice. This product has been designed and qualified for Industrial Level. Qualification Standards can be found on IR's Web site.

International
 Ior Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

Notice

The products described herein were acquired by Vishay Intertechnology, Inc., as part of its acquisition of International Rectifier's Power Control Systems (PCS) business, which closed in April 2007. Specifications of the products displayed herein are pending review by Vishay and are subject to the terms and conditions shown below.

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

International Rectifier ${ }^{\circledR}$, IR $^{\circledR}$, the IR logo, HEXFET ${ }^{\circledR}$, HEXSense ${ }^{\circledR}$, HEXDIP ${ }^{\circledR}$, DOL ${ }^{\circledR}$, INTERO ${ }^{\circledR}$, and POWIRTRAIN ${ }^{\circledR}$ are registered trademarks of International Rectifier Corporation in the U.S. and other countries. All other product names noted herein may be trademarks of their respective owners.

[^0]: t_{1}, Rectangular Pulæ Duration (Seconds)

